Handout for 2020-02-12

Conceptual questions

Question 1. Starting with \mathbf{r}, how do you compute $\mathbf{r}^{\prime}, \mathbf{r}^{\prime \prime}, \mathbf{T}, \mathbf{N}$?
Question 2. Let a be a constant. Consider the curve

$$
\mathbf{r}(t)=\langle a t, 3 \cos t, 3 \sin t\rangle
$$

Without doing any calculations:

- What does this curve look like? Do you know its name?
- What is its (exact) curvature if $a=0$? Yesterday you computed the curvature when $a=1$. What happens to its curvature if you let $a \rightarrow \infty$ or $a \rightarrow-\infty$?

Question 3. Suppose a particle is moving with constant speed, with position given by $\mathbf{r}(t)$. Why does this not imply $\mathbf{r}^{\prime \prime}(t)=\mathbf{0}$?

Computations

Problem 1. Show that the curves $\mathbf{r}_{1}(t)=\left\langle 2 t, 2-2 t, 3+t^{2}\right\rangle$ and $\mathbf{r}_{2}(s)=\left\langle 6-2 s, 2 s-4, s^{2}\right\rangle$ intersect perpendicularly.
(You should first verify that they intersect at all!)
Problem 2. In the third conceptual question above, you saw that motion with constant speed does not imply $\mathbf{r}^{\prime \prime}=\mathbf{0}$. However, it does imply that \mathbf{r}^{\prime} and $\mathbf{r}^{\prime \prime}$ are orthogonal at all times. Can you prove this?

Hint: Philip showed something very similar in lecture.
Problem 3. Suppose that $\mathbf{r}(0)=\langle 1,-2,1\rangle$ and $\mathbf{r}^{\prime}(t)$ is always orthogonal to $\langle 5,2,2\rangle$. What can you say about the curve that $\mathbf{r}(t)$ describes?
Problem 4. Let C be the curve of intersection of the surfaces $y=x^{2}$ and $z=x^{3}$. Find the radius and center of the osculating circle to the curve C at the point $(0,0,0)$.

Question 2.

- It is a helix when $a \neq 0$, and a circle when $a=0$.
- When $a=0$, the curvature is the reciprocal of the radius of the circle: $1 / 3$. You saw in lecture that $\kappa=0.3$ when $a=1$. As $a \rightarrow \pm \infty$, the curvature tends to zero.
Question 3. For example, circular motion $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$ has constant speed but nonzero acceleration vector.
Problem 1. The system of equations

$$
\begin{aligned}
2 t & =6-2 s \\
2-2 t & =2 s-4 \\
3+t^{2} & =s^{2}
\end{aligned}
$$

has the single solution $t=1, s=2$. Then check that $\mathbf{r}_{1}^{\prime}(1) \cdot \mathbf{r}_{2}^{\prime}(2)=0$.
Problem 2. Differentiate the equation $\left|\mathbf{r}^{\prime}(t)\right|^{2}=$ constant with respect to t, writing the left hand side as a dot product and using the product rule.
Problem 3. The curve is entirely contained in the plane $5(x-1)+2(y+2)+2(z-1)=0$.
Problem 4. Parametrize the curve: $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ will do. One finds that $\mathbf{N}(0)=\langle 0,1,0\rangle$ and $\kappa(0)=2$. Thus the radius of the osculating circle is $1 / 2$ and it has center

$$
\langle 0,0,0\rangle+\frac{1}{2}\langle 0,1,0\rangle=\langle 0,1 / 2,0\rangle
$$

i.e. the point $(0,1 / 2,0)$. It is contained in the $x y$-plane.

