Math 53: Multivariable Calculus

Handout for 2020-02-12

Conceptual questions

Question 1. Starting with **r**, how do you compute $\mathbf{r}', \mathbf{r}'', \mathbf{T}, \mathbf{N}$?

Question 2. Let *a* be a constant. Consider the curve

 $\mathbf{r}(t) = \langle at, 3\cos t, 3\sin t \rangle.$

Without doing any calculations:

- What does this curve look like? Do you know its name?
- Computations

computed the curvature when a = 1. What happens to its curvature if you let $a \rightarrow \infty$ or $a \rightarrow -\infty$?

• What is its (exact) curvature if a = 0? Yesterday you

Question 3. Suppose a particle is moving with constant speed, with position given by $\mathbf{r}(t)$. Why does this *not* imply $\mathbf{r}''(t) = \mathbf{0}$?

Problem 1. Show that the curves $\mathbf{r}_1(t) = \langle 2t, 2 - 2t, 3 + t^2 \rangle$ and $\mathbf{r}_2(s) = \langle 6 - 2s, 2s - 4, s^2 \rangle$ intersect perpendicularly. (You should first verify that they intersect at all!)

Problem 2. In the third conceptual question above, you saw that motion with constant speed does not imply $\mathbf{r}'' = \mathbf{0}$. However, it does imply that \mathbf{r}' and \mathbf{r}'' are orthogonal at all times. Can you prove this?

Hint: Philip showed something very similar in lecture.

Problem 3. Suppose that $\mathbf{r}(0) = \langle 1, -2, 1 \rangle$ and $\mathbf{r}'(t)$ is always orthogonal to $\langle 5, 2, 2 \rangle$. What can you say about the curve that $\mathbf{r}(t)$ describes?

Problem 4. Let *C* be the curve of intersection of the surfaces $y = x^2$ and $z = x^3$. Find the radius and center of the osculating circle to the curve *C* at the point (0, 0, 0).

Question 2.

- It is a helix when $a \neq 0$, and a circle when a = 0.
- When a = 0, the curvature is the reciprocal of the radius of the circle: 1/3. You saw in lecture that $\kappa = 0.3$ when a = 1. As $a \to \pm \infty$, the curvature tends to zero.

Question 3. For example, circular motion $\mathbf{r}(t) = (\cos t, \sin t)$ has constant speed but nonzero acceleration vector.

Problem 1. The system of equations

$$2t = 6 - 2s$$
$$2 - 2t = 2s - 4$$
$$3 + t^{2} = s^{2}$$

has the single solution t = 1, s = 2. Then check that $\mathbf{r}'_1(1) \cdot \mathbf{r}'_2(2) = 0$.

Problem 2. Differentiate the equation $|\mathbf{r}'(t)|^2 = \text{constant}$ with respect to *t*, writing the left hand side as a dot product and using the product rule.

Problem 3. The curve is entirely contained in the plane 5(x-1) + 2(y+2) + 2(z-1) = 0.

Problem 4. Parametrize the curve: $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$ will do. One finds that $\mathbf{N}(0) = \langle 0, 1, 0 \rangle$ and $\kappa(0) = 2$. Thus the radius of the osculating circle is 1/2 and it has center

$$\langle 0, 0, 0 \rangle + \frac{1}{2} \langle 0, 1, 0 \rangle = \langle 0, 1/2, 0 \rangle$$

i.e. the point (0, 1/2, 0). It is contained in the *xy*-plane.